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We shall solve the systems of equations

AD, + a3, D, + a7y = 0, Amy + vD; 4 agemy =0 (1)
AD, + by @y + byeiny = 0, Ams + byymy = 0 (2)
ADg ¢, D3 + cromy =0, Amg |- cpomg = 0 (3)

for the cylindircal region represented in the figure. Here ®,, m,  re-
present solutions in the i-zone, aps bik are the given coefficients, and
v is the eigenvalue of the boundary value problem.

The conditions on the zone boundaries are given in the following form

oM. om,
0z 0z 0 or z=1 (4)
iﬂ)z . amz . 0 . 5
s for r=R )
M, I
@, = Dy, Tor 3, ar on the boundary of zones 6)
s aomy 5.8 omg ("ZTO, —h <z< h) (
my = 01My, or %2 g
aMy Mg
D=0y G =g
N omy dms on the boundary of zones (7
my = Mg, 0z =& Jz (z=-4h, 0<r<rg)
oD, oy
D=0y, =Ty
ot amy dmgy. ( __ 1 \on the boundaryof zones(8)
N R TR L L VTR (r=re h<[2] < H)

We are tnterested in the smallest possible v,

It is clear that such a solution is independent of the angle, moreover,

754



On the solution of a boundary value problenm 755

because of symmetry, it is sufficient to restrict attention to the

region D.

Introducing new functions ‘pi' n, such that
. i i i i
Wi Ay '@ - A'my, ng = Ay O; + Ay m

and choosing the coefficients A“i accordingly, we shall bring the systems

(1), (2}, (3) to the fom

AW, — ', = 0, Any —9°n, = (19
AV, — %2y = 0, Any, —a%n, =0 (29
AYV; —x2Wy = 0, Ang—s3%ng =0 (3"

The conditions (4) and (5) are preserved also for the new functions.
With respect to the conditions (6)-(8), these will assume the form

N . O‘F 6‘! Ono
Wy = Vo 4 prreits, arl == Oy (l*u ar -4t or }
any aY. ans (69
ny = po1 Wy - paants, T 3, <E121 drz + H22 or )
oY, 8‘}‘3
Wy = ;'3 4 25903, Y 311 -+ 912 ()z
» ' 6n1 r d‘{ 3 | n 8n3 (7 )
ny = o'y -1~ 20pn5, o1 fuTg U P T
a¥s d¥s ons
\Fz = ‘F3 + g Mg, 7 == Yo (—(jr __1'__, £, __a_;__>
Ona dng (8 )
o s or T g

where a.,, f3;,, p;, are expressed in tems of 6, y,, ¢, and the coeffi-
cients of the equations. Without writing out these relations, we shall
only note that ., = € a_,.

It is obvious that particular solutions of equations (27), satisfying
all conditions except those where r = r,, will be the functions

W {10 (l/xzz : (_?) ,]1\ (]/ mﬂr 4.
e
- Ly S8 T
(Vo (T R K (Y e T ( j;l )| eos ”T;‘ nm0t. 2.5,

let us formulate the problem: To construct in the zones 1-3 a system
of eigenfunctions Z(z), using the conditions when z = 0, z = H, z = h,
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Fig., 1.

We shall regard 7(z) as a vector with components Y and U, and we shall
introduce the notations

v {yl O<z<h), U {ul (0=iz< h)
Ty (h<z<<H), T \us (h<:i<<H)

It is clear that these functions are discontinuous when z = h, and
that they satisfy the conditions

fan diz { 3u Bre
Z _ — ( ) s B Z/ _ — ( h ) Z,
h—0 . o1 Ao la+os ‘h 0 .321 ',322 Ih+0 (9)
and also the conditions
7z = for z=0, z-=1H (10)

In our notations the particular solutions of the equations (1’) and
(3), satisfying the conditions when z = 0, z = H and z = h, will be
written in the form

Y = o) 1P (), ™ = OO () 1, (2)
‘Fs(k):‘—‘ Cl(k)]o (ear) ya(k) (2), ”3”{) = Cl(k)/o (per) ”3(“ (2) (11)

where p, are the roots of the characteristic equation A (u) = 0, obtained
from the condition (7”) Ly the obvious substitution

cos Y pt~-xtz cos Vi —o2z, COS Y u,2— w2 (H—2), cos Y p,2 — 0,2 (I —2)

If the functions Z(z) really satisfy the conditions claimed for the
eigenfunctions, then we shall be able to construct a general solution
both in zone 2 and in the zones 1-3. Finally an application of the con-
ditions when r = r; will permit us to determine the eigenvalue of the
Loundary value problem (to within a constant) and the unknown coefficients

lk
¢, )’ Cz(n)' Ca(n .

We shall examine in greater detail the functions 7(z). let us intro-
duce the operator
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A=(o )

The domain of definition of A 1s a set of vector functions P of argu-
ment z with continuous derivatives up to the second order, satisfying
the conditions (9) and (10). Here, and from now on, the continuity of the
derivatives of ® 1s required everywhere in the region except at the point
z = h. L and M are determined from the relations (12)

AU" —6®U) (0-Tz<h)

Y* —n2Y 0 <z<h),
LYZ{ CU" —otl) (h<z< H)

B y) toscm,  MU={
A, B, C are for the time being undefined coefficients and Y and U com-
ponents of the vector function. If we take for Y and U the components of
the eigenfunction Z(z), then clearly

—p (0<z<h),
—BpYY (h<z<H),

— ApU  (0<z <h)

LY = MU={ "y aeeem 9

We shall choose the constants A, B, C such that the operator A is
sel fconjugate, 1.e. that the relation

(D), AD,) = (AD,, D)) (14)
is satisfied.

We will show how this can be done. let us consider the expression
H
Q= S (D,AD, — O,AD,]dz (15)
o
As before we will denote the components . by Y* and U where

ut (0<<z<h)

(_{yxi O<z<h), Ui:{
- ust (A< z<<H)

yt (<< HD
let us transform the expression (15):

H H
0 = S [YOLY® _yOLyW) 4, +g [UOMU® _ U® MU dz —
0
h H
+ B (y5y52 — y5 My,®)

0

+

h

— (yl(l)yl'(ﬂ —_ yl'(l)yl(‘-’-))

h

H
A (1, Ou, @ — @ )| C (g @) — g m) |
h

0
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Using the conditions for z = 0, z = I, z = h, we will get
Q = (auy:s(]) -+ amua(])) z=h} Jl’(z) leeh —?/1(2) ioh (911!/:1,“) + ﬁxz%"”);:h -
— Byl I:’/l(a)l z=h - [3 Y@ Lanyy D on A A’ - h(“zlyam | ®oputg)mp —
1"1( ) ( '1?/ 3 Sty + ﬁ’Z"S (l)) [z =h —~ (/113“) ,z_hu.i @) 'z +‘ Cu3(2) [z=hu3’(]) ,‘z:h
We shall try to find values of 4, B, C, for which Q) will be zero.
To this end the conditions
Ay B — By @ - dagu'® =0, — 3™ By, — A3y =0 (16)

&0y, P - Aoty — Cuy® = 0, — By ® — APoeity® + Cuy® = 0

or
; BaeB BaC 2 PuB C ,
p = F22 o — Bl ug @ = — 2By @1; 2 (17)
Y, A= aAZZB ys @ ia ug'» u, = — 7“1?;1\3 5 (@ + a“C ug @
must be satisfied for z = h, where
Aot = 0ty 8ap — Agullay, A3 == 3118 — PraBa

Since the functions Y(Z), y(2) satisfy the same conditions as Y(l),

), we obtain the following relations among A, B, C:

anzB Can aral3 anC .

Am | o pu,  Taa {312» T TAa [321. AAha :322 (18)
r‘3"2B _ — 3l _ - ’.3123 . PnC —_

ag~ 11, Tas T %Ay0, TAsA T &Koy, ABA T Aoy (19)

The conditions (19) are consequences of (18) since
Bik = Eptix

From the first three relations of (18) we will find the unknowns 4,

B, C, and obtain

B 21 pq, C=—22pg A= 8ufn (20)
a2 Ba am

QAog

Substituting the found A, B, C, in the last of the relations (18),

see that it is fulfilled automatically, since
Bik == eoix
Thus, for A, B, C, computed by the formulas (20), the expression (15)

vanishes.
If we take for the functions fb and ®_, Zl and Zz,that is solutions
of the equation AZ = — 7 correqPonang to two distinct eigenvalues,
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then keeping in mind that

_f —wt (0<z<h),

i
. i 7 MU' =
— Dplys (h <z < H),

LY { —Apry' (o<z<h)

—Cpuyt (A< z< H)
we will obtain

h H h H
{909, 0dz 4 B { ya0ysuz + 4§ w0u,@dz + € Qugtugodz = 0 @21)
h h

0 0

Thus the eigenfunctions Z; and 7, turn out to be orthogonal in the
sense of (21).

For the proof of other properties of the eigenfunctions we will use
the theory of integral equations. To this end we shall construct Green’s
function G(z,zo). Such a function will be clearly a tensor of rank two:

Gu G
€ ) = ) 22
(2 2) Gy Go (2)
As it is known, the eigenfunctions are determined by the relation
H
Z = _[L:’S Gz, ) Z ) dt (23)
0
The function G satisfies the equation
8 (z— zp) 0 \
AG=
0 8 (z — z,) ) (24)

The components G,, and G,  are continuous at the point z = z, together
with their first derivatives, and the components Gll and 612' while
themselves continuous at the point z = zg, have a discontinuity in their
derivatives.

dCn dey, 1 for zp<h
dz (ZO +' 01 ZO) - dz (ZO - Ol :0) = 1 (‘25)
- for zz>h
! f <h
dG dGs 4 for 3
d:a (zo _|'_ Ov ZO) - dz2 (ZO - Ov ZO) = 1 (26)
< for zo> h
Further, the function G must satisfy the boundary conditions
dG
7;=0 forz-=0nz=—=1I0 (27)
oy Oy dG Bun Bz \ d¢
G = le g1 L ={b )4
[n—o Wy Ogg / [n-+o, dz |n—o Bar Beo dz |hto (28)
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As it is known, the solutidn of the equation
AD=F

(where ® is a vector with components Y, U and F is a vector with compo-
nents f,, fz) is represented as:

H H H
©=\6EOFO® ¥={Guh + Caf) & U=\ Gufi+Cut) &t
Clearly
LY=f,  MU=7 (29)

Let us further apply to the integral equations under consideration
the general theory of equations with a symmetrical root. To this end we
shall prove the symmetry of Green s function, i.e. we will establish that

(@, ADy) = (AD,, @) (30)

where @, ®, are two vector functions, and the operator A is determined
from the foi lowing relations

AY (z1) =\ [Gu1 (21, 22) Y (20) + Gra (21, 22) U (25)]1dzy
(31)

AU (z)) =\ [Gy1 (21, 22)Y (20) -+ Goa (21, 22) U (2,)]dz,

0&/1;1: S

Thus, the proof of formula (30) 'is reduced to the proof of the follow-
ing relations

Gy (21, 29) =Gy, (22, 5y), Gys (21, 20} =GCrgy (23, 1), G (21y 22) =Gas (22, 21) (32)
Let us establish the formulas (32) for Green’s function, introduced
according to (22). As shown above (see formula (15)) the relation

H
S (D, AD, — O,AD,)dz = 0

0

is valid for the vector functions ®;, and ®,, satisfying the equations

A‘Dl:Fl, A(D2=F2

and the boundary conditions (9) and (10).

Let us take for the functions ®; and ®, vectors, which are a part of
the tensors Gz, z,) = G{1) and G(z, z,) =G 2) Clearly

AG(l) _ ( S (Z - Zl) 0 ) AG(Z) _ ( 8 (Z - Z2)

0 be—z) U ) @
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( Gu‘") . ( Gn(z))

6n™" G
Gum ) - ( Glz(z) )

( G Cx™

The symmetry of Green’s function allows us to conclude immediately
that all eigenvalues of our problem A = — u? are real, and that the eigen-
functions form orthogonal systems in the sense of (21), as has already
been established.

Applying formula (15) to the vectors
’
021'(1) 621(2)
]
(722(1) (;21(2)

we obtain the formulas (32).

We shall now prove that the eigenfunctions form a complete system. To
this end we shall use the Hilbert-Schmidt theory. It is sufficient to
show that any twice continuously differentiable function satisfying the
boundary conditions can be represented as a source by the root, 1i.e.
that any vector ® can be represented in the form of the integral

H
0@ =\ 6@ HrE (34)
0

In order to obtain such a representation,” we shall substitute the

vector ® in the left member of the equation

AD =h (35)

We will get the function h. It can easily be verified that A = 0 is
not the eigenvalue of our problem. Therefore, the solution of the equa-
tion (35) is unique, and is clearly expressed by the formula (34), which
is what had to be proved. After the construction of the system of eigen-
functions Z(z), a solution of the boundary value problem is easily ob-
tained in the form of a series.

The authors have solved several versions of the afore-mentioned bound-
ary value problem, where it was sufficient to restrict oneself to six
terms for the functions q& nl n, 2}, and nine terms for the functions
q& k , Vg(k) and n, k , n (k). In the course of the solution of the
problem an electronic computer BESM was used.

Translated by 1.8,



